Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731281

RESUMO

African swine fever (ASF) is a lethal hemorrhagic disease of Suidae, i.e., domestic pigs and wild boars, caused by African swine fever virus (ASFV). The development of cross-protective vaccines against ASF is imperative for effective disease control, particularly in regions where ASF is endemic, potentially featuring multiple circulating ASFV isolates. The investigation of non-hemadsorbing naturally attenuated isolates and laboratory recombinant strains with a deletion in the EP402R gene has attracted interest. Our study aimed to assess the impacts of various administration routes and doses of the naturally attenuated ASFV-PSA-1NH (immunotype IV, genotype I) isolate on the manifestation of clinical signs of ASF and the level of protection against the heterologous ASFV-Stavropol 01/08 strain (seroimmunotype VIII, genotype II). The results demonstrated that the intranasal administration of a low dose of ASFV-PSA-1NH to pigs minimized the clinical signs of ASF and established a high level of protection against the heterologous strain ASFV-Stavropol 01/08. Despite the challenges in standardizing the dosage for intranasal administration, this approach appears as a viable alternative in ASF vaccination.

2.
Front Microbiol ; 14: 1225587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808306

RESUMO

The extreme genetic and immunobiological heterogeneity exhibited by the African swine fever virus (ASFV) has been a significant impediment in the development of an efficacious vaccine against this disease. Consequently, the lack of internationally accepted protocols for the laboratory evaluation of candidate vaccines has become a major concern within the scientific community. The formulation of such protocols necessitates the establishment of a consensus at the international level on methods for the determination of homologous and heterologous isolates/strains of ASFV. The present article provides a comprehensive description of biological techniques employed in the classification of ASFV by seroimmunotypes. These techniques involve a holistic evaluation of ASFV isolates/strains based on their antigenic properties as determined by the hemadsorption inhibiting test (HAdI) using type-specific sera and an immunological test (IT) conducted on pigs inoculated with attenuated strains. The article outlines the methods for setting up the HAdI test, an IT on pigs, and the processes involved in the acquisition of type-specific serums for the HAdI test. It is pertinent to note that the definitive classification of seroimmunotype can only be ascertained after conducting an IT on pigs. The findings from the HAdI test or the phylogenetic analysis of the EP402R gene should be considered preliminary in nature.

3.
Vaccines (Basel) ; 11(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37243111

RESUMO

Understanding the immunological mechanisms of protection and the viral proteins involved in the induction of a protective immune response to the African swine fever virus (ASFV) is still limited. In the last years, the CD2v protein (gp110-140) of the ASFV has been proven to be a serotype-specific protein. Current work is devoted to the investigation of the possibility of creating protection against virulent ASFV strain Mozambique-78 (seroimmunotype III) in pigs previously vaccinated with vaccine strain FK-32/135 (seroimmunotype IV) and then immunized with the pUBB76A_CD2v plasmid, containing a chimeric nucleotide sequence from the CD2v protein gene (EP402R, nucleotides from 49 to 651) from the MK-200 strain (seroimmunotype III). Vaccination with the ASFV vaccine strain FK-32/135 protects pigs from the disease caused by the strain with homologous seroimmunotype-France-32 (seroimmunotype IV). Our attempt to create balanced protection against virulent strain Mozambique-78 (seroimmunotype III) by induction of both humoral factors of immunity (by vaccination with strain FK-32/135 of seroimmunotype IV) and serotype-specific cellular immunity (by immunization with the plasmid pUBB76A_CD2v of seroimmunotype III) was unsuccessful.

4.
Viruses ; 15(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36851644

RESUMO

African swine fever virus (ASFV) is an extremely genetically and phenotypically heterogeneous pathogen. Previously, we have demonstrated that experimental inoculation of pigs with an attenuated strain, Katanga-350 (genotype I, seroimmunotype I) (ASFV-Katanga-350), can induce protective immunity in 80% of European domestic pigs against the homologous virulent European strain Lisbon-57. At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous virulent strain, Stavropol 01/08 (genotype II, seroimmunotype VIII) (ASFV-Stavropol 01/08). In this study, we assessed clinical signs, the levels of viremia, viral DNA, anti-ASFV antibodies and post-mortem changes caused by subsequent intramuscular injection with ASFV-Katanga-350 and heterologous ASFV-Stavropol 01/08. Inoculation of pigs with the ASFV-Katanga-350 did not protect animals from the disease in the case of the subsequent challenged ASFV-Stavropol 01/08. However, 40% of pigs were protected from death. Moreover, the surviving animals showed no pathomorphological changes or the presence of an infectious virus in the organs after euthanasia at 35 days post challenging. The ability/inability of attenuated strains to form a certain level of protection against heterologous isolates needs a theoretical background and experimental confirmation.


Assuntos
Vírus da Febre Suína Africana , Suínos , Animais , República Democrática do Congo , Sus scrofa , DNA Viral , Genótipo
5.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893695

RESUMO

The African swine fever virus (ASFV) is the cause of a recent pandemic that is threatening the global pig industry. The virus infects domestic and wild pigs and manifests with a variety of clinical symptoms, depending on the strain. No commercial vaccine is currently available to protect animals from this virus, but some attenuated and recombinant live vaccine candidates might be effective against the disease. This article describes the immunobiological characteristics of one such candidate-the laboratory-attenuated ASFV strain, Katanga-350-which belongs to genotype I. In this study, we assessed clinical signs and post-mortem changes, the levels of viremia and the presence of viral DNA caused by injection of ASF virus strains Katanga-350, Lisbon-57, and Stavropol 08/01. Intramuscular injection of this strain protected 80% of pigs from a virulent strain of the same genotype and seroimmunotype (Lisbon-57). At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous (genotype II, seroimmunotype VIII) virulent strain (Stavropol 08/01). Virus-specific antibodies were detectable in serum and saliva samples between 8-78 days after the first inoculation of the Katanga-350 strain (the observational period). The results suggested that this strain could serve as a basis for the development of a recombinant vaccine against ASF viruses belonging to seroimmunotype I.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Animais , República Democrática do Congo , Suínos , Vacinas Sintéticas
6.
PLoS One ; 17(7): e0270641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797376

RESUMO

African swine fever (ASF) is an infectious disease of domestic and wild pigs of all breeds and ages, with the acute form of the disease being characterized by high fever, hemorrhages in the reticuloendothelial system and a high mortality rate. Registered safe and efficacious ASF vaccines are not available. The development of experimental ASF vaccines, particularly live attenuated, have considerably intensified in the last years. There is much variability in experimental approaches undertaken by laboratories attempting to develop first generation vaccines, rendering it difficult to interpret and make comparisons across trials. ASF virus (ASFV) genotyping does not fully correlate with available cross-protection data and may be of limited value in predicting cross-protective vaccine efficacy. Recently, ASFV strains were assigned to a respective nine groups by seroimmunotype (from I to IX): in vivo the grouping is based on results of cross protection of pigs survived after their infection with a virulent strain (bioassay), while in vitro this grouping is based on hemadsorption inhibition assay (HADIA) data. Here we demonstrate the antigenic and protective properties of two attenuated ASFV strains MK200 and FK-32/135. Pronounced differences in the HADIA and in immunological test in animals allow us to consider them and the corresponding reference virulent strains of the ASFV of Mozambique-78 (seroimmunotype III, genotype V) and France-32 (seroimmunotype IV, genotype I) as useful models for studying the mechanisms of protective immunity and evaluation of the candidate vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Animais , França , Genótipo , Macrófagos , Suínos
7.
PLoS One ; 17(5): e0265819, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551531

RESUMO

The spread of African swine fever (ASF) in Eurasia has forced a return to the development of live vaccines based on naturally or experimentally attenuated strains of the virus including those resulting from genetic manipulations. This process includes evaluation of the immunomodulating properties of the vaccines. In this report we provide our assessment of two tests for immunobiological evaluation of a candidate live vaccine against ASF from the attenuated ASF virus (ASFV) strain KK-202: (i) investigation of the effect of the attenuated ASFV strain KK-202 on the protectiveness of the vaccine ASFV strain FK-32/135 and a vaccine against classical swine fever (CSF) from the strain LK-VNIIVViM; (ii) determination of the phagocytic activity of blood neutrophils in pigs inoculated with ASFV strains differing in virulence. A simultaneous or sequential inoculation of attenuated strain KK-202 (seroimmunotype II) and vaccine strain FK-32/135 (seroimmunotype IV) into pigs resulted in the loss of protection against the virulent strain France-32 (seroimmunotype IV). Following the simultaneous or sequential inoculations of the ASFV strain KK-202 and the CSF virus (CSFV) vaccine produced from the strain LK-VNIIVViM, the neutralizing antibody titers against the CSFV observed in the experimental groups (after vaccination and after the challenge infection with the virulent CSFV strain Shimen) were not different from those found in animals of the control group. The phagocytic activity of blood neutrophils was shown to increase from 30% in the norm to 50%-94% depending on the virulence of the ASFV strains inoculated into pigs. The results of this work demonstrate the ability of the attenuated ASFV strains to modulate the development of the cellular link of protective immunity without negative impact on the humoral immune response. The informative value of the described immunobiological tests in vivo and in vitro seems to be a more preferable alternative in comparison to the commonly used in vitro tests, which do not always correlate with the development of protection against ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Peste Suína Clássica , Vacinas Virais , Animais , Suínos , Vacinas Atenuadas , Proteínas Virais/genética , Replicação Viral
8.
Methods Mol Biol ; 2503: 159-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575893

RESUMO

Adsorption of red blood cells (hemadsorption) on the surface of macrophages infected with African swine fever virus (ASFV) is a unique phenomenon allowing to determine virus infectious titer in hemadsorption unit (HAU) and differentiate virus strains phenotypically. In the meantime, hemadsorption of particular ASFV strain can by inhibited by homologous anti-ASFV serum containing antibody to the serogroup-specific virus protein (CD2v). Here, we describe a hemadsorption inhibition assay (HADIA) to phenotype ASFV strains to one of the known nine serogroups using blood-derived swine macrophages. The HADIA is a powerful method in the ASFV immunopathology and vaccine research since it provides additional antigenic and phenotypic characteristics of virus strains that can't be defined by other assays.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Hemadsorção , Sorogrupo , Suínos , Proteínas Virais/genética
9.
Pathogens ; 11(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35456079

RESUMO

African swine fever virus causes hemorrhagic disease in swine. Attenuated strains are reported in Africa, Europe, and Asia. Few studies on the diagnostic detection of attenuated ASF viruses are available. Two groups of pigs were inoculated with an attenuated ASFV. Group 2 was also vaccinated with an attenuated porcine reproductive and respiratory syndrome virus vaccine. Commercially available ELISA, as well as extraction and qPCR assays, were used to detect antibodies in serum and oral fluids (OF) and nucleic acid in buccal swabs, tonsillar scrapings, OF, and blood samples collected over 93 days, respectively. After 12 dpi, serum (88.9% to 90.9%) in Group 1 was significantly better for antibody detection than OF (0.7% to 68.4%). Group 1's overall qPCR detection was highest in blood (48.7%) and OF (44.2%), with the highest detection in blood (85.2%) from 8 to 21 days post inoculation (dpi) and in OF (83.3%) from 1 to 7 dpi. Group 2's results were not significantly different from Group 1, but detection rates were lower overall. Early detection of attenuated ASFV variants requires active surveillance in apparently healthy animals and is only reliable at the herd level. Likewise, antibody testing will be needed to prove freedom from disease.

10.
Pathogens ; 9(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283790

RESUMO

This article summarizes the study results on the generation of attenuated strains of African swine fever virus (ASFV) of seroimmunotypes I-VIII and the creation of live vaccines for temporary protection of pigs during a period of epizootics in the surveillance zone (a zone adjacent to the area of outbreak). These studies were initiated at the Federal Research Center for Virology and Microbiology (FRCVM, formerly VNIIVViM) at the time of introduction of the pathogen to the Iberian Peninsula in the middle of the 20th century. The developed experimental vaccines against ASFV seroimmunotypes I-V provided protection against virulent strains of homologous seroimmunotypes by day 14 after vaccination, lasting at least four months.

11.
Emerg Infect Dis ; 21(2): 312-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25625574

RESUMO

African swine fever virus (ASFV) causes highly lethal hemorrhagic disease among pigs, and ASFV's extreme antigenic diversity hinders vaccine development. We show that p72 ASFV phylogenetic analysis does not accurately define ASFV hemadsorption inhibition assay serogroups. Thus, conventional ASFV genotyping cannot discriminate between viruses of different virulence or predict efficacy of a specific ASFV vaccine.


Assuntos
Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Genótipo , Sorogrupo , Febre Suína Africana/epidemiologia , Animais , Genes Virais , Geografia Médica , Saúde Global , Filogenia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...